
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

Pharo: a Live Programming Environment

Pharo comes with an integrated development environment that
allows you to browse not only your source code, but also the
whole system. Pharo is a live programming environment: you
can modify your objects and your code while your program is
executing. All Pharo tools are implemented in Pharo:
• a code browser with refactorings;
• a debugger, a workspace, and object inspectors;
• and much, much more!
Code can be inspected and evaluated directly in the image,
using simple key combinations and menus (open the contextual
menu on any selected text to see available options).

The Pharo Code Browser

The Pharo code browser is composed of 5 panes:
• The packages pane shows all the packages of the system;
• The classes pane shows a hierarchy of the classes in the
selected package; the class side checkbox allows for getting
the methods of the metaclass; the comments button toggles
the display of the class’s comment;

• The protocols pane groups themethods in the selected class
to facilitate searching for a method when its name is not
known; when a protocol name starts with a *, methods of
this protocol belong to a different package (e.g., the *Fuel
protocol groups methods that belong to the Fuel package);

• Themethods pane lists the methods of the selected proto-
col; a down-arrow (resp. up-arrow) icon in front of a method
indicates amethod overridden in at least one subclass (resp.
superclass); icons are clickable and trigger special actions;

• The source code pane shows the source code of the selected
method. If the source code gets too long, the background
color starts changing indicating it is time for refactoring!

Packages ProtocolsClasses Methods

Source
code

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

A simple, uniform and powerful model

Pharo has a simple dynamically-typed object model:
• everything is an object— instance of a class;
• classes are objects too;
• there is single inheritance between classes;
• traits are groups of methods that can be reused orthogo-
nally to inheritance;

• instance variables are protected;
• methods are public;
• blocks are lexical closure a.k.a. anonymous methods;
• computation happens only via message sends (and variable
assignment).

Less is more: There is no type declaration, no primitive objects,
no generic types, no modifiers, no operators, no inner classes,
no constructor, and no static methods. You will never need
them in Pharo!

Books
Pharo By Example (also available through amazon.com)

http://pharobyexample.org
Deep into Pharo (also available through amazon.com)

http://deepintopharo.com
Enterprise Pharo (draft of future book)
https://ci.inria.fr/pharo-contribution/job/
PharoForTheEnterprise/ws/

More books
http://stephane.ducasse.free.fr/FreeBooks

Links
Main website http://www.pharo.org
Code hosting http://smalltalkhub.com
Questions http://stackoverflow.com/questions/tagged/pharo
Contributors http://contributors.pharo.org
Consultants http://consultants.pharo.org
Consortium http://consortium.pharo.org
Association http://association.pharo.org

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

a clean, innovative, open-source
Smalltalk-inspired environment

http://www.pharo.org

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

Pharo: the Elevator Pitch

Pharo is both an object-oriented, dynamically-typed general-
purpose language and its own programming environment. The
language has a simple and expressive syntax which can be
learned in a few minutes. Concepts in Pharo are very consistent:
• Everything is an object: buttons, colors, arrays, numbers,
classes, methods. . . Everything!

• A small number of rules, no exceptions!
Pharo runs in a virtual machine. Development takes place in an
image in which all objects live and can be modified, eliminat-
ing the edit/compile/run cycle. Developers share and publish
their source code using a dedicated version control system and
services such as http://smalltalkhub.com. For deployment and
debugging, the state of a running image can be saved at any
point, then restored.

Minimal Syntax

Six reserved words only
nil the undefined object

true, false boolean objects
self the receiver of the current message

super the receiver, in the superclass context
thisContext the current invocation on the call stack

Reserved punctuation characters
"comment"

’string’
#symbol unique string

$a the character a
12 2r1100 16rC twelve (decimal, binary, hexadecimal)

3.14 1.2e3 floating-point numbers
#(abc 123) literal array with the symbol #abc and

the number 123
{foo . 3 + 2} dynamic array built from 2 expressions

#[123 21 255] byte array
. expression separator (period)
; message cascade (semicolon)

:= assignment
^ return a result from a method (caret)

[:p | expr] code block with a parameter
| foo bar | declaration of two temporary variables

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

Message Sending

A method is called by sending a message to an object, the
message receiver; the message returns an object. Messages
are modeled from natural languages, with a subject, a verb,
and complements. There are three types of messages: unary,
binary, and keyword.
A unary message is one with no arguments.

Array new.
#(1 2 3) size.

The first example creates and returns a new instance of the
Array class, by sending the message new to the class Array
(that is an object). The second message returns the size of the
literal array which is 3.
A binary message takes only one argument and is named by
one or more symbol characters.

3 + 4.
’Hello’, ’ World’.

The +message is sent to the object 3 with 4 as the argument.
In the second case, the string ’Hello’ receives the message ,
(comma) with ’ World’ as the argument.
A keyword message can take one or more arguments that are
inserted in the message name.

’Smalltalk’ allButFirst: 5.
3 to: 10 by: 2.

The first example sends the message allButFirst: to a
string, with the argument 5. This returns the string ’talk’.
The second example sends to:by: to 3, with arguments 10
and 2; this returns a collection containing 3, 5, 7, and 9.

Precedence

Parentheses>unary>binary> keyword, and finally from left
to right.

(10 between: 1 and: 2 + 4 * 3) not

Here, the messages + and * are sent first, then between:and:
is sent, and finally not. The rule suffers no exception: opera-
tors are just binary messages with no notion of mathematical
precedence, so 2 + 4 * 3 reads left-to-right and gives 18, not 14!

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

Cascading Messages

Multiple messages can be sent to the same receiver with ;.
OrderedCollection new

add: #abc;
add: #def;
add: #ghi.

The message new is sent to OrderedCollection which re-
sults in a new collection to which 3 add: messages are sent.
The value of the whole message cascade is the value of the last
message sent (here, the symbol #ghi). To return the receiver
of the message cascade instead (i.e., the collection), make sure
to send yourself as the last message of the cascade.

Blocks

Blocks are objects containing code that is executed on demand,
(anonymous functions). They are the basis for control structures
like conditionals and loops.

2 = 2
ifTrue: [Error signal: ’Help’].

#(’Hello World’ $!)
do: [:e | Transcript show: e]

The first example sends the message ifTrue: to the boolean
true (computed from 2 = 2) with a block as argument. Be-
cause the boolean is true, the block is executed and an ex-
ception is signaled. The next example sends the message do:
to an array. This evaluates the block once for each element,
passing it via the e parameter. As a result, Hello World! is
printed.

Unit testing

Pharo has a minimal still powerful framework that supports the
creation and deployment of tests. A test must be implemented
in a method whose name has a test prefix and in a class that
subclasses TestCase.

OrderedCollectionTest >> testAdd
| added |
added := collection add: ’foo’.
self assert: added == ’foo’.
self assert: (collection includes: ’foo’).

The OrderedCollectionTest >> testAdd notation indi-
cates that the following text is the content of the method
testAdd in the class OrderedCollectionTest. The sec-
ond line declares the variable added. To execute unit-tests,
open the Test Runner tool.

