
Chapter

18
Cleaning up at Termination

Having a garbage collector to take care of memory management for you is wonderful. Not having to worry

about allocating and freeing memory makes life a lot easier and code a lot more bug-free. However, there are

some things that the garbage collector does not take care of, and which you need to explicitly handle in the code.

In particular, external resources will stay open even if the objects that reference them are garbage collected.

For example, if you open a file or a socket, it will stay open until you close it (or your Smalltalk image exits).

Internally, if you have a Smalltalk process that stays in an infinite loop waiting for input to process, that process

will never terminate, even if you no longer reference the process in your code.

Often you will open files, read or write them, then close them. Similarly, often you will fork Smalltalk

processes that do some work then simply terminate. However, on other occasions you may open a file that you

plan on keeping open for a while, such as a log file. You may have a Smalltalk process that sits in an infinite

loop waiting for input from a socket or waiting for input from another Smalltalk process.

Exiting your image will close external files and sockets and terminate Smalltalk processes. However, when

you are developing and debugging an application, bugs in your code will often raise an exception which you try

to debug, then eventually terminate. This leaves processes running and files open. This chapter talks a little about

how you might close files and terminate processes when you terminate the application in situations like this. For

more information, see the article Cleaning up after yourself, by Alec Sharp and Dave Farmer, in the March-

April, 1995 issue of The Smalltalk Report.

The CleanUp object
We define a new class called CleanUp, which tracks, for example, the sockets, files and Smalltalk processes

that are permanently open. We don't add files that are opened, read, and then closed in a

valueNowOrOnUnwindDo: block. Here's the definition of CleanUp, followed by the class initialization and

instance creation code. This code can also be found in the file cleanup.st.

Object subclass: #CleanUp
 instanceVariableNames: 'processes files sockets '
 classVariableNames: 'AccessProtect '

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

 poolDictionaries: ''

Cleaning up at Termination 2

 category: 'CleanUp'

CleanUp class>>initialize
 "self initialize"
 AccessProtect := Semaphore forMutualExclusion

CleanUp class>>new
 ^super new initialize

We create the mutual exclusion semaphore because our application may be running in many forked

processes. To make sure that only one process is trying to add to the CleanUp object at a time, we use the

semaphore to protect access to the various collections. On the instance side, we initialize the variables that hold

on to the files, sockets, and processes, and we provide methods to add files, processes, and sockets to the

CleanUp object. We also need methods to remove them from the object should the application code close them

itself. We'll just show the code that adds files, since the code for processes and sockets is very similar.

CleanUp>>initialize
 processes := OrderedCollection new.
 files := OrderedCollection new.
 sockets := OrderedCollection new

CleanUp>>addFile: aFile
 ^AccessProtect critical: [files add: aFile]

CleanUp>>removeFile: aFile
 ^AccessProtect critical: [files remove: aFile]

When the application terminates, we want to close all the open files and sockets, and terminate all the

processes. We nil the instance variables at the end so the garbage collector can recover the objects that were

contained in the collections (we assume that a new CleanUp object will be created next time the application is

run).

CleanUp>>doCleanUp
 AccessProtect
 critical:
 [processes do: [:each | each terminate].
 files do: [:each | each close].
 sockets do: [:each | each close].
 processes := files := sockets := nil]

Using the CleanUp object
Now that we have a CleanUp class defined, how do we use it in our application. The first decision is where to

store it so that it is globally accessible. There's a lot more information on that topic in Chapter 7, Global

Variables. For now, we'll just assume that it's stored in the class MyGlobals and is accessible through the

cleanUp accessor. The next section of code shows (in a non-robust way) how we might add files, sockets, and

processes to the CleanUp object in our code.

MyClass>>myStartInputOutput
 MyGlobals cleanUp addSocket: self myCreateInputSocket.
 MyGlobals cleanUp addSocket: self myCreateOutputSocket.
 MyGlobals cleanUp addProcess: [self myDoInputLoop] fork.
 MyGlobals cleanUp addProcess: [self myDoOutputLoop] fork.

Cleaning up at Termination 3

MyClass>>myOpenLogFile
 logFile := self logFileName writeStream.
 MyGlobals cleanUp addFile: logFile

Finally, we need code to invoke the cleanUp message to the CleanUp object so that all files and sockets are

closed and all processes are terminated. We do this by wrapping our main application start code in a

valueNowOrOnUnwindDo: block. This makes sure that clean up is done whether the application terminated

normally, we interrupted the application with ctrl-C, or we got an exception.

MyApplication>> start
 [self myStartInputOutput.
 [self myProcessObject: self myGetObject] repeat]
 valueNowOrOnUnwindDo: [MyGlobals cleanUp doCleanUp]

Other approaches
There are of course other approaches to the problem of making sure that you close and terminate everything

that is open and running. The technique described in this chapter is a fairly easy and expedient technique. As you

move toward a production system, a better and more object-oriented approach is to spread the responsibility to

each subsystem or component. Each subsystem tracks what it has open or running. When the main application is

shut down, it sends a shutDown message to each subsystem. The subsystem then shuts itself down gracefully,

closing files, terminating processes, and doing any other appropriate operations.

	Cleaning up at Termination
	The CleanUp object
	Using the CleanUp object
	Other approaches

