
© Stéphane Ducasse 6.1

Most Common Reengineering Patterns

• Most common situations

• Redistribute Responsibilities
– Eliminate Navigation Code
– Move Behaviour Close to Data
– Split up God Class

• Transform Conditionals to Polymorphism
– Transform Self Type Checks
– Transform Provider Type Checks
– Transform Conditionals in Registration

© Stéphane Ducasse 6.2

Redistribute Responsibilities

Eliminate Navigation Code

Data containers

Monster client of
data containers

Split Up God Class

Move Behaviour Close to Data

Chains of data
containers

© Stéphane Ducasse 6.3

The Core of the Problems

Indirect
Provider
doSomething()

Immediate
Provider
+provider
getProvider()

Indirect
Client

intermediate.provider.doSomething()
Or
intermediate.getProvider.doSomething()

provider intermediate

Law of Demeter

© Stéphane Ducasse 6.4

Move Behavior Close to Data

• Problem: How do you transform a data
container into a service provider

• Answer: Move behavior defined by indirect
clients to the class defining the data they
manipulate

• …however
– Visitor
– Difficult to identify client code to be moved in

• Responsibility of the provider
• Access attributes of the provider
• Accessed by multiple clients

© Stéphane Ducasse 6.5

Transformation…
Provider
+x
+y
+sety(val)
+setx(val)

Client
Op2() …

provider.sety(provider.x + provider.y)
…

Provider
-x
-y
-sety(val)
+bump()

Client
Op2() …

provider.bump()
…

this.sety(provider.x + provider.y)

© Stéphane Ducasse 6.6

Detection

• Look for data containers
• Duplicated client code
• Methods using sequence of accessors

© Stéphane Ducasse 6.7

Difficulties

• When the moved behavior accessed client
data, having extra parameters can lead to
complex interface

• Certain classes (Set or Stream) are data
containers. Move functionality to provider if

– It represents a provider responsibility
– It accesses attributes of the provider
– The same behavior defined in multiple clients

© Stéphane Ducasse 6.8

When Legacy Solution is not a Problem

• Visitor typically defines behavior that acts on
another class

• Configuration classes (global settings,
language dependent information..)

• Mapping classes between objects and UI or
databases representation

© Stéphane Ducasse 6.9

Eliminate Navigation Code

• a.k.a Law of Demeter
• Problem: How do you reduce the coupling due
to classes that navigate object graph?

• Answer: iteratively move behavior close the
data

• …however
– Systematic uses produce large interfaces (shield

collections)

© Stéphane Ducasse 6.10

Car
-engine
+increaseSpeed()

Transformation

…
engine.carburetor.fuelValveOpen = true

Engine
+carburetor

Car
-engine
+increaseSpeed()

Carburetor
+fuelValveOpen

Engine
-carburetor
+speedUp()

Car
-engine
+increaseSpeed()

…
engine.speedUp()

carburetor.fuelValveOpen = true

Carburetor
-fuelValveOpen
+openFuelValve()

Engine
-carburetor
+speedUp()

carburetor.openFuelValve()fuelValveOpen = true

Carburetor
+fuelValveOpen

© Stéphane Ducasse 6.11

Detection

• Class with lot of accessors few methods
• Each time a class changes, indirect clients get
impacted

• a.b.c.d.op() identified by
– egrep ‘.*\..*\..*\..’ *.java

• anObject.m1().m2().op() identified by
– egrep ‘.*\(\).*\(\).*\(\).’ *.java

© Stéphane Ducasse 6.12

Detection (ii)

• Not a problem
– (a.isNode()) & (a.isAbstract())

• Disguise Navigation
Token token;
token = parseTree.token();
if (token.identifier() != null){…

¤
if(parseTree.token().identifier() != null){…

© Stéphane Ducasse 6.13

When the Legacy Solution is the Solution

• User Interfaces or databases may need to
have access to indirect providers

• Brokers or object servers are special objects
returning objects

© Stéphane Ducasse 6.14

Split Up Good Class

• a.k.a: God Class [Riel96]
• Problem: How to break a class that controls
the complete system logic?

• Answer: Incrementally distribute
responsibilities into slave classes

• …however it is difficult to
– Identify abstractions in blob
– Limit impact of changes on other parts

© Stéphane Ducasse 6.15

Detection

• Huge and monolithic class with no clear and
simple responsibility

• “The heart of the system”
• One single class contains all the logic and
control flow

• Classes only serve as passive data holder
• Manager, System, Root, *Controller*,
• Introducing changes always requires to
change the same class

© Stéphane Ducasse 6.16

Transformation

• Difficult because God Class is a usually a huge blob
• Identify cohesive set of attributes and methods

– Create classes for these sets
• Identify all classes used as data holder and analyze

how the god class use them
– Move Behavior close to the Data

• Try to always have a running system before
decomposing the God Class

– Use accessors to hide the transformation
– Use method delegation from the God Class to the providers
– Use Façade to minimize change in clients

© Stéphane Ducasse 6.17

Strategies

• If God Class does not need to be changed do’t
touch it!

• Wrap it with different OO views
– but a God Class usually defines the control flow of

the application

© Stéphane Ducasse 6.18

Transform Conditionals to Polymorphism

Transform
Self Type Checks

Test provider
type

Test self type Test external
attribute

Transform
Client Type Checks

Transform Conditionals
into Registration

Test
null values

Introduce
Null Object

Factor Out Strategy

Factor Out State

Test object state

© Stéphane Ducasse 6.19

Forces

• Requirements change, so new classes and new
method will have to be introduced

• Adding new classes may clutter the
namespace

• Conditionals group all the variant in one place
but make the change difficult

• Conditionals clutter logic
• Editing several classes and fixing case
statements to introduce a new behavior is
error prone

© Stéphane Ducasse 6.20

Overview

• Transform Self Type Checks eliminates conditionals
over type information in a provider by introducing
new subclasses

• Transform Client Checks eliminates conditionals over
client type information by introducing new method to
each provider classes

• Factor out State (kind of Self Type Check)
• Factor out Strategy (kind of Self Type Check)
• Introduce Null Object eliminates null test by

introducing a Null Object
• Transform Conditionals into Registration eliminates

conditional by using a registration mechanism

© Stéphane Ducasse 6.21

Transform Self Type Checks

• Symptoms
– Simple extensions require many changes in

conditional code
– Subclassing impossible without duplicating and

updating conditional code
– Adding new case to conditional code

A
m()

Client …
case Text: this.doSomething()
case Border: this.doOther()
case D:

© Stéphane Ducasse 6.22

Transformation

A
m()

Client …
case Text: this.doSomething()
case Border:
case D:

Client
A
m()
hook()

this.doSomething()

…
this.hook()

Text
hook()

Border
hook()

D
hook()

© Stéphane Ducasse 6.23

Detection

• Long methods with complex decision logic
– Look for attribute set in constructors but never

changed
– Attributes to model type or finite set constants
– Multiple methods switch on the same attribute
– grep switch ‘find . -name “*.cxx” -print’

© Stéphane Ducasse 6.24

Pros/Cons/Difficulties

• Pros
– New behavior are easy to add and to understand: a new class
– No need to change different method to add a behavior
– All behaviors share a common interface

• Cons
– Behavior are dispersed into multiple but related abstractions
– More classes

• Difficulties
– Not always one to one mapping between cases and subclasses
– Clients may be changed to create instance of the right

subclass

© Stéphane Ducasse 6.25

Transform Client Type Checks

• Clients explicit type checks
• Adding a new provider requires to change all
the clients

• Clients are defining logic about providers

A
init()

Client
a : A
m()switch (a.class)

case B: a.init(); ((B) a).x();
case C: a.init(); ((C)) a).y();
Case D: ((D) a).z()

B
x()

C
init()
Y()

D
z()

© Stéphane Ducasse 6.26

Transformation
A
init()

Client
a : A
m()

switch (a.class)
case B: a.init(); ((B) a).x();
case C: a.init(); ((C)) a).y();
Case D: ((D) a).z() B

x()
C
init()
Y()

D
z()

Client
a : A
m()

…
doit();
…

A
init()
doit()

B
x()
doit()

C
init()
Y()
doit()

D
z()
doit()

this.init (); this.x(); this.init (); this.y();

this.z();

© Stéphane Ducasse 6.27

Detection

• Transform Self Type Checks
• Changing clients of method when new case
added

• Attribute representing a type
In Smalltalk: isKindOf:, isMemberOf:

• In Java: instanceof
• x.getClass() == y.getClass()
• x.getClass().getName().equals(….)

© Stéphane Ducasse 6.28

Pros/Cons/Difficulties

• Pros
– The provider offers now a polymorphic interface

that can be used by other clients
– A class represent one case
– Clients are not responsible of provider logic
– Adding new case does not impact all clients

• Cons
– Behavior is not group per method but per class

• Difficulties
– Refactor the clients (Deprecate Obsolete

Interfaces)
– Instance creation should not be a problem

© Stéphane Ducasse 6.29

When the Legacy Solution is the Solution

• Abstract Factory may need to check a type
variable to know which class to instantiate.

– For example streaming objects from a text file
requires to know the type of the streamed object
to recreate it

• If provider hierarchy is frozen (Wrapping the
classes could be a good migration strategies)

• Software that interfaces with non-oo
libraries (switch to simulate polymorphic
calls)

© Stéphane Ducasse 6.30

Factor Out Strategy

• Problem: How do you make a class whose
behavior depends on testing certain value
more extensible

• Apply State Pattern
– Encapsulate the behavior and delegate using a

polymorphic call

© Stéphane Ducasse 6.31

Transformation

AbstractStrategy

handleOperation()

A
operation()

…
strategy.handleOperation()
…

StrategyX
handleOperation()

A
operation()

…
case X: …
case Z: ….
…

strategy

StrategyZ
handleOperation()

© Stéphane Ducasse 6.32

Pros/Cons/Difficulties

• Pros
– Behavior extension is well identified
– Behavior using the extension is clearer
– Change behavior at run-time

• Cons
– Namespace get cluterred
– Yet another indirection

• Difficulties
– Behavior can be difficult to convert and

encapsulate (passing parameter…)

© Stéphane Ducasse 6.33

Transform Conditional into Registration

• Problem: How do you reduce the coupling
between tools providing services and clients
so that addition/removal of tools does not
change client code?

• Answer: Introduce a registration mechanism
– Tools register/unregister
– Clients query them via the registration repository

© Stéphane Ducasse 6.34

Detection

• Long method in clients checking which tools to
invoke based

• Removing or adding a tool force to change
client code

• Difficulty to have run-time tool
loading/unloading

© Stéphane Ducasse 6.35

Transformation (i)

ToolClient
read()

XMLReader
openFile (File)

WordReader
on (file)

suffix := selectedFile suffix = ‘xml’.
suffix = ‘xml’

ifTrue: [XMLReader openFile: selectedFile.
^ self]

suffix = ‘doc’
ifTrue: [WordReader on: selectedFile.

^ self].
…

© Stéphane Ducasse 6.36

Transformation (ii)

XMLReader
openFile (File)
load()
unload()

ToolClient
read()

(PluginManager uniqueInstance
 findToolFor: selectedFile suffix) action

WordReader
on (file)
load()
unload()

Plugin
action
for: String use: class
with: method

PluginManager
add/remove (Tool)
findToolFor (String)

(PluginManager uniqueInstance
 add: (Plugin for: ‘xml’ use: XMLReader

with: openFile)

(PluginManager uniqueInstance
 remove: (Plugin for: ‘xml’ use: XMLReader

with: openFile)

© Stéphane Ducasse 6.37

Pros/Cons/Difficulties

• Pros
– New tools can be added without impacting clients
– Clients no longer are responsible of the
– Interaction between tools and clients is normalized
– Reduce coupling and support modular design

• Cons
– Every tool should register and unregister

• Difficulties
– Action should be defined on the tool and not the client

anymore, information should be passed from the client to the
tool

– Client knew statically the tools, now this knowledge is
dynamic so more effort for user interface consistency (i.e.,
consistent menu ordering) is necessary

© Stéphane Ducasse 6.38

Introduce NullObject

• Problem: How can you avoid repeated tests
for null values?

• Answer: Encapsulate the null behavior as a
separate class that is polymorphic to the
provider

© Stéphane Ducasse 6.39

Transformation

AbstractObject

doit()

Client
m()

RealObject
doit()

nothing

NullObject
doit()

RealObject
doit()

Client
m()

…
a.doit()
…

…
if (a!=Null) {
a.doit()}
…

© Stéphane Ducasse 6.40

Pros/Cons/Discussions

• Pros
– Clients do not need to test for null values

• Difficulties
– Different clients may have different null behavior
– In strongly typed languages, you have to introduce Null

interface
• Discussions

– The NullObject does not have to be a subclass of RealObject
superclass as soon as it implements RealObject’s null
interface (in Java and Smalltalk)

• Do not apply when
– Very little code uses direct variable access
– Code that checks is well encapsulated in a single place

© Stéphane Ducasse 6.41

Conclusion

• Most common lacks of OO use
• Late binding is powerful and flexible
• Long case statements are more costly than
virtual calls

